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Large Elastic-Plastic Deformations of Bﬁilt-In o ¥
Circular Plates under Uniform Loadt ’

Part I - Theoretical Analysis

by H. G. Hopkins2

Abstract

Considerable effort has been given to the study of the
behavior of built-in circular plates under uniform load. This
problem is not only of great practical interest but, bécause of
its relative simplicity, it 1s also of great significance in
structural theory, The information at present available in the
plastic range is not extensive, and further information would
be of considerable use in design. This fact, together with the
opportunity afforded by digital computing machines for handling
extensive numerical work, has stimulated the present studye.

The purpose of this paper is to give a treatment of
this problem which is more general than has hitherto been
attempted, Briefly the essential task is to modify the analysis
given by von Karman for large elastic deformations to include
plastic deformations, A flow theory for non-hardening Tresca f
material is used, The analysis leading to the fundamental
equations is given here, Details of the method of computation,
the numerical results, and comparison with experimental results E
will be given in Part II of this paper,

l, Introduction

The behavior of a built-in circular plate under unifofm
load is an important technical problem with several applications.
It is also of very considerable significance in the theory of
structures because it is one of the simplest problems, involving
a two~-dimensional structural element, that may be formulated,

It is natural therefore that this problem should possess a long

1. The rcsults presented in this paper were obtained in the
course of research sponsored by Watertown Arsenal Laborato-
ries, under Contract DA-19-020-0RD-2598,

2+ Visiting Professor of Applied Mathecmatics, Brown University,
Providence, R. I.
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history, and great efforts have been made to analyse various of
its aspects with a view to providing design data. The literature
on the theory of plates is very extensive, In the following
summayy attention will be confined to the contributions of most
significance in relation to the present study. Results applicable
within the elastic range have been described admirably by
Timoshenko [l]*.

A theoretical analysis of this problem leading to a
simple solution is possible only if very restrictive assumptions
are made. This is the situation in the Kirchhoff bending theory
of thin plates which involves the following assumptions: linear
elements normal to the undeformed middle surface remain normal
to the deformed middle surface; the transverse displacements aré
sufficiently small for extension of the middle surface to be
neglected and simplified curvature formulas to be applied;
Hooke!s law is obeyedy and the stresses normal to the middle
surface are, on the average, much smaller than the stresses
parallel to this surface. The solution of the problem subject
to these assumptions is due to Poisson [2] (see also [3])s Now
let the first of Kirchhoff'!s assumptions be replaced by the less
restrictive one that linear elements normal to the undeformed
middle surface merely remain linear. Thus account is now taken
of transverse shearing deformations. A simple closed expression
is still found for the transversc displacement: this expression

is in fact the cxact (threc-dimensional) one first given by

* Numbers in square brackets refer to the bibliography at the
end of the paper.
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,;3 Love [3]. The results show that neglect of transverse shearing
~ deformation introduces an error in the displacement of order
‘? h2/a2 where h and a2 are the plate thickness and radius, respec-
2 , tively. This error is often quite small in practical applications,
In general if the assumptions of the Kirchhoff theory
are not made, then treatment of the problem is more complicated
és A and numerical methods must be applied directly to the basic
' equations, This is the situation in the analyses due to Foeppl
[4] and von Karmén [5] in which the displacements are not suf-
ficiently small for the extension of the middle surface to be
neglected although simplified curvature formulas may still be
used, The theories both lead to two non-linear simultaneous

3 . partial differential equations, but differ in that the former

does not, whereas the latter does, take into aécount bending
action in addition to membrane actions In Foepplt!s theory the
only boundary conditions that may be imposed are those directly
related to edge displacement, There are no bending stresses,

and accordingly edge rotation must be permitted. Further,

Foeppl!s theory may be expected on general grounds to approxi-
mate closely von Karman's theory when the displacements are
relatively large., Away from the edge membrane action will pre-
dominate over bending action. In the immediate neighborhood of
the built-in edge the reverse situation applies, and there must
be a narrow boundary layer region across which the transition
occurs., The first detailed numerical treatment of the Foeppl
equations is due to Hencky [6], and that of the von Karman equa-

tions to Way [7]s It should be noted particularly that the

el
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. 1 Kirchhoff theory is linear whereas the von Karman (and of course
-
= the Foeppl) theory is non-linear. For example the latter theory
E", predicts that the displacements are ultimately proportional to
: p]'/3 where p is the wniform intensity of applied load. It is

also known that the neglect of membrane action in the Kirchhoff

theory introduces errors of order w2/h? where w is (say) the

%-ff central displacement, and accordingly this theory is certainly

v inadequate if it predicts w/h > %.

.
PN

The above summary shows that analysis of the problem
éi within the elastic range is highly satisfactory, It is true of
course that the von Karman theory has not yet been extended to
take account of transverse shearing deformations, but this modi-
fication is not of great practical importance,
In contrast the analysis of the problem within the
plastic range is very much less satisfactory. So far as the

present writer is aware previously published work is confined

elther to bending or membrane action, and even here is by no

means complete, Trifan [8) has given an elastic~plastic bending
theory based upon an empirical approximation to an experimental
stress-strain curve; the predictions of plastic flow and deforma-
tion theories were compared. More recently analyses have been
made in which the elastic deformations are completely neglected.
Thus Hopkins and Prager [9] have determined the transverse load ,
required to initiate the bending deformation of a plastic-rigid ;
plate whose material obeys Trescals yield condition and associated
. flow rule. This analysis has been extended to other yield con-

ditions by Hopkins and Wang [10], In contrast Hill [11] has

RS AT Bk NI oo, 3 P LA N '
- LB S P .
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treated the membrane deformation of a plastic-rigid plate whose
material obeys von Mises yield condition and associated flow rule;

linear strain-hardening is included and no restriction is made

e ¥
« g
T R e

v on the magnitude of the displacements. This problem has also
been discussed by Ross and Prager [12] for the case of the
Tresca yield condition.
; The information at present available in the plastic ;
range is not therefore very extensive, .and further information
would be of considerable use in design. This fact, together with
the opportunity provided by digital computing machines for
handling extensive numerical work, has stimulated the present
study.
;': The purpose of this paper is to give an analysis of this
. problem more general than has hitherto been attempted,and thereby
] to provide design data, The material, initially both homogeneous
and isotropic, is taken to be non-hardening. The theory, which
is of the flow (or incremental) type, involves these assumptions:

Xy a) 1linear elements normal to the undeformed middle surface

bt remain normal to the deformed middle surfacej

b) the displacements are not so large that approximate
curvature formulas cannot be used or that strains can-
not be measured with respect to undeformed elements;

¢) elastic strain-rates obey Hooke's law, and plastic
strain-rates are given by the von Mises conditionj

d) the yield function is that of Tresca, and also coincides

« : with the plastic potential; and

e) the stresses normal to the middle surface are, on the
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average, much‘smaller than the stresses parallel %o

this surface.
It is difficult to justify all of these assumptions, and the
applicability of the numerical results based upon the present
theory must perforce be judged directly through their comparison
with experimental results, Experimental work in progress at
Brown University will provide a basis for such a comparison,
Here only brief comment can be made on the assumptions. Experi-
mental work due to Shanley [13] suggests that assumption a)
introduces little\error if h.2/a2 is sufficiently small. The
reason for the choice of a flow theory is well-known, and, as
already mentioned, basing this theory on the Tresca yield con-

dition is a compromise. Assumptions b) and e) are conventionally

made in thin plate theory.

The analysis leading to the fundamental equations is
given here, Details of the method of computation, the numerical

results, and comparison with experimental results will be given
in Part II of this paper.
2. Notation

The notation used is now described; and for convenience

the plate 1s taken to be horizontal. Let:

a = plate radius;

h = plate thicknessj

p = uniform load intensitys

z = distance (positive below and) normal to middle surface;
r = distance from axis of symmetry;

w = displacement (positive vertically downwards) of points

in middle surfacej
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. u = outwards radial displacement of points in middle
;1 | surface;
;1 E = Young's modulus;
::, v = Poisson's ratios
D = E3/12 (1 - ¥?) = flexural rigiditys

; 9o = tensile yield stress of materialj ;
- Opydgsd, = radial, circumferential and transverse stresses;
3 er16, 96,03 e,’c,a,'c'e,efcpg eye,Sre P = total, elastic and plastic
-4 | strain~rates in the radial, circumferential and
( transverse directions;

M. Mt = radial and circumferential bending moments;
) Nt = radial and circumferential membrane forces; and

AL, badian il ke daddds.

radial transverse shear force,

The basic notation is that used by Timoshenko [1]; see

also Figs 1. In the plastic range flow theory necessitates the

et

4

use of rates-of~change of certain quantities denoted here by

primes, e.ge e; etce The material does not exhibit viscosity

N .’ « 2N N
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effects and accordingly any monotonic increasing quantity asso-

N O

5 clated with the progressive deformation of the plate, e.ge D,

is suitable for use as a "time" t. Additional notation is defincd

later when first introduced,

3¢ Analysis
The problem is one of rotational symmetry, and accordingly

all quantities are functions at most of r,z and t, The essential

task is to modify the analysis of von Karmsn [5] through the

introduction of stress-rate v. strain-rate equations that are
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valid for plastic deformations.

1) Eguilibrium equations

The present theory is a two-dimensional one in that* the
overall equations of equilibrium are expressed in terms of stress
resultants. The form of these equations (see [1]) is of course

independent of the mechanical behavior of the plate:

.._a.. - = 3
9. oW - o
ar(I‘Qr + -a-f.- Nr) + pr 0’ (—)

Oe (3)

0
arCri) - My - rQ,

It is straightforward to eliminate Q, between Eqs., (2) and (3):

..Q_ - ow 2:
(M) - M+ %y, + % pr O 4)

Note that in the general case when p 1s not constant the last
term in Eq. (4) is J;p(r)rdr. Equations (1) and (&) are the

0
fundamental statical equationse. These equations may be differ-

entiated with respect to t to give

=) - Ny =0, (5)
8 (vt ' ' ' 12
-a-I-,(er)~Mt+I'(g—¥—-Nr+g¥Nr)+%pr = 0, (6)

The membrane forces and bending moments are defined by the

equations

o

L)
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(Nr’Nt) = J\ (or,dt)dz, (Mr’Mt) = ! 2(6,0,)3%e.  (7)

2ih igh

These equations may also be differentiated with respect to t to

give
f;%h +h
(N;,N;) = | (o;,d;)dz, (MI',,ML) = f z(o;,ofc)dz. (8)
l%h Q%h

2) Stress-rate v, strain-rate relationships

Assumptions a) and b) of our theory lead to the kinemati-

cal relations (see [1])

2
=80 4 L (Quy2 |z QW =u_ 23
r “ar 2 (ar) 4 w2 ! St T T roar (9)
and hence ‘ 5
t ' ! 1
t-8u L dwow _ .0 W, toul L 20w,
.y T or + o7 ar 275 By r ©ror ° (10)
or
Assumptions ¢) and e) lead to
e _ 1 t e _ 1 !
Be,” =¢, - vo.y  EBey Oy = VO, (11)

! '
The plastic strain-rates erp, atp are defined by the
equations

1 t ?
S - € °,
st st et (12)

According to assumptions c¢) and d) the ratios and signs, but not
the absolute magnitudes, of the plastic strain-rates are given
from the following condition, The plastic strain-rate vector
corresponding to any plastic stress state is directed in the sense
of the outwards-drawn normal to the yield locus at this stress

states This condition was proposed originally by von Mises [1l]

w " i
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and was later extended by Prager [15] (see also Refs, [16] and
[17])s The present approach is due to Prager, The foregoing
statement pre-supposes that there is a well-defined normal, and
otherwise some degree of arbitrariness within the obvious ex-
tremes is permissible for the direction of this vector (see [18]
and [19])s 1In general the yield locus is a surface in a three~

dimensional spece in which Gps O and ¢, are taken as rectangular

t
cartesian co-ordinates, and the plastic strain-rate vector has
components e;P, eLP, s;P. Now according to assumption e)

S, <L dr, dt’ and hence the relevant part of the yield locus
lies in the immedlate neighborhood of its intersection with the
plane g, = Os Here Tresca's yield condition is assumed, and
hence yielding is possible only if the absolute value of the
shear stress acting parallel to an arbitrarily oriented plane
is equal to the yield stress in shear (% °o)° In the present
application the yield locus is therefore adequately represented

by the plane curve given by

maxs | % S % 49 &(or - dt)l = % e (13

This yield criterion is represented by the hexagon ABCDEF drawn

in the 90 -~plane shown in Fig, 2., The full yield criterion is

t
a cylinder based on this hexagon with its axis equally inclined
to the co-ordinate axes., The plastic strain-rate vector

e;P, et'P, e;P does not in general lie in the plane ¢, = O, How-

p

ever the normality of the plastic strain-rate vector e;p, e% ’

e;P to the yield surface implies the normality of the vector
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1
t

easily found.

t
' e;p, e, Py O to the yield curve, Thus the ratio e;P : etp is

The strain-rate e, 1s not essential to our dis-

2

cussion but may be found as follows. First from Hooket!s law

. ] .
S Esze = - v(o; + d%); (14)

and second from the condition of plastic strain-rate incompressi-

dhn

; P=_ ("D 'p
el €, (e P + &P,

(15)

'
and hence all the ratios e;P : a;P : ezp may be found. The

simplicity of the relations governing the‘plastic strain-rates

Let

1 =, S
- v 4
RN 3

f is at once evident,

£ =1(opy 043 6) (16)

denote the (simplified) yield function, the sign of f being so

chosen that £ < 0 inside the hexagon and £ > O outside the
hexagon. Note that only the region f < 0 is of physical signifi-
cance. The yield function { 1s always linear in ¢, and dt’ ile.es

f=ad, + Bdt + constey and it follows that

'p -
€p

i
'y e = BN Af £ =£1 =0 where ' 2 0. (17)

The quantities ¢ and P for the non-singular regimes corresponding

; to the sides of the hexagon are exhibited in the following table,

2 Relations(18):

!

! Regime AB BC cD DE EF FA
£ +dt~do +dt-dr-do -dr-do -dt—do -dt+dr-do +dr~do
a 0 -1 -1 _O +1 +1
B +1 +1 0 -1 -1 0
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Permissible values of o and B for the singular regimes corres=~
ponding to the vertices of the hexagon are easily written down,
Cefe

5 Regime Ao, = o, = 65 a=1 -9, p=0 where O ¢<® <1 (19)

3 so that © increasing from O to 1 corresponds to a continuous
transition between the common terminal point of the regimes FA

and AB, etc.. The quantity A' = \'(r,z;t) determines the magnitude

of the plastic strain-rates and its determination is discussed
later,
The relevant stress-rate v. strain-rate relations may

now be expressed in the form

' ) _
B(e, = Br') = o = vo;, (20)

t
t,

E(e; -a\') = d; - Vo

where a and B are now further defined to be zero whenever an

element undergoes a purely elastic change in strain, i.es
o =B=0 if either (i) £ <0y £ 20 0r (41) £ =0, £' <O. (21)

Equations (20) are equivalent to

t

Ty (o e e -
o = = B = {a; +vel - (B + av>x'J . (22)

Next from Egqs. (10) and (22),

M Y s e T— T e e

-1»«mrfm.-lxwnm.!ﬂﬁ!..ﬂﬂ':’,ngzrﬁ?;,
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n
1 E 1 t 2t
6 = e J O+ waw_ _ z3dM¥
T (1 - vZ) or gr or arz
t | ¥
+ v(u' - zt%‘i'f—)/r - (a + BVA } ,
' 2
d‘ = E {(u‘ -z.@.".".'.)/r-i-v(.@l.l.'. $ (3)
2 1
w! 3w !
J

Note that « and P are generally functions of ry2z and t. It now
follows from BEgs. (7), (8) and (23) tha_’gh
. ' ' 9
N = ——Eh Qu +§Eﬁ.‘.~f_+v.}.1.‘_..1 (a +Bv))~'dz}, :
r L .yl ¢ oror r I
“4h (24)
h 7
' . _En u' o @ul ,awauly 1 A}
N 1 -v9) {'—+V(a' t3ror T h @ +av) dz}’u
+h
and
+h
! 32y v aw‘ 12 ' ! d
yow_ + lc
My = - DY+ ¥ 5 (¢ + BYN zdz} ,
or h (25)
o .
' 2.1 .
Ml = -DJE A4y OSP4 12 P (B + o\ zdz )
t T or ar 3 |
LN V

Let us now return to the determination of )\'. Throughout

the plastic region ' = 0,y ie€s
as! + Bo, =0 (26)
r . .

and hence from Eqs. (23) it follows that N' is given from

Ab
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v 2 1 1
(o + p2 + 2apv)\' = <a+ev><-g-g’-+%;-’g-g—-z-g-rg—) ;
B+ an -z Wy, (27)

¥
The indefinite integrals\} (l,z)h'dz are easily written downt

2 2 Fz ' u! w gw' n
(@= + B< + QGBV)\j ANaz = (a0 + Bv)-{(%;— + %; %;—)z i
2.1 2 v L2 3
0wz~ ', - ow._ 2% ;
222 25’*“3 vav)lwz = & )/ ; (28)
{ £ r 2
@2 + B2 + 20pv) | M'2dz = (o +pv) | G- +§¥%§’“"Z‘z‘;} |
21 3

3w Z) Loy P og? o' 23 ‘
arz "3"J ([3 av ) (u T =57 -3—)/1'. .Jl

If it is assumed that @ and f are, for fixed r and t, piecewise
constant in z then the integrals occurring in Eqs. (24) and (25
are formally given through use of Eqs. (28)s, These integrals
involve the position of the elastic~plastic boundary z = szp(r;t)
as an unknown, and this boundary must be found from the condition
that the elastic material immediately adjacent to the plastic~
elastic boundary is just on the point of yielding, Thus Eq,

(26) also applies at the boundary of the elastic region. In
addition the same plastic regime, for fixed r and t, may not
apply throughout a plastic regionj in this case the position

of the boundary between adjacent plastic regimes occurs as an
additional unknown but its determination is probably straight-
forward, The foregoing discussion rules out the possibility of
the occurrence of singular plastic regimes, In this case x' is

not piecewise constant (see Eqs (19)), and the integrals in
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= BEgs. (24) and (25) cannot be formally evaluated as before. These
| remarks indicate the difficulties due to the presence of moving
elastic-plastic and plastic~plastic interfaces, and their precise

extent can only be known through the details of the numerical

dad

treatment of the problem,

. s
Note that, in general, it is not true that d; and dt
are continuous across elastic-plastic and plastic~-plastic inter-

facese

3). The fundamental equations

E The fundamental equations for the problem are now imme-
diately deduced through the elimination of the rates of change

of the stress resultants and stress couples between the statical

é : equations (5) and (6) and Eqs. (2%) and (25): ]
f 1
o , ' ' - 3 ! -
L %(r%—?—-)-%—+{(l ”>+r-5r-}%%;—’—+¢~0,
S %h 1h
| P = - %{%J (o + Bv)k'dz} + %I B + av))\'dz,
; <3h +h
’ 2 f18 av'y) ou' Eh ! '
D = - - o)
§ or {r '5'1-'(:0 or )J r ar (1 = v2) g'}%{g%‘ * 5{5 g"}- 7
/ (29)
i 2h
! syl 1 (a + pv)r'az "2+ =
| T -3 p'er B o0,
i Jin (1~v<)
; B 3h
Y = 5?5 {rf (@ + Bv))\'zdz} - f B +av ' zdz.
~+h -3h
’ U

Equations (29) are two non-linear simultaneous differential

. ) 1 i
- e SE N PR WS T T N L 7 T ——r -~ | A masse o bt e hearts ‘
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equations for the determination of the deformation of the plate,
Integration of these equations must proceed in the following way.
Let the plate be in a known state at time t., Then w, u, N,

etc., are all known as functions of r and t, and the position of
the elastic-plastic boundary is known as a function of r, z and
te Now let t increase by a small amount At. Then the equations
determine the resulting small changes Aw and Au. A difficulty
is that the resulting small change in position of the elastic-
plastic boundary is not known beforehand. The movement o« this
boundary is to be found from the requirement that £ is continuous
across the boundary. The state of the plate at time t + At is
now known. This procedure is repeated step-by~step up to any
level of applied load.

In the present problem the boundary conditions are

- I I - 3
w-—-g-‘l'-"--u =0 at r=a for t> O (30)

So long as an element of the plate undergoes purely
elastic changes in strain Eqs. (29) may be replaced by the von

Karman equations (see [1]),

d
-8, {(l-v)+ra%-} @2 = o

dr T '

g (31)
d }J1 d Eh 4 d 1l.d !
D a'f{; 2 ). T {3 B - do - 0]
{

hr
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%)¢ The development of plasticity

It is obvious that the major difficulty in the integra-~
tion of Egs. (26) is due to the presence of moving elastic-plastic
boundaries. The computational task is eased by the fact that it
is possible to make some qualitative remarks about the develop~
ment of plasticity in the plate,

Attention is confined here to the case of a moderately
thick plate for which the various types of action occur in this
orders elastic bending, plastic bending, elastic membrane, and
plastic membrane, This is not to say that all elements of the
plate experience all types of action,

The known solution of the problem when there is elastic
bending action shows that plastic deformation occurs first at

the edge of the plate [1]e. Since
g, = dt/v =¥ % p a2/h2 (r =a, z & %-h), (32

the corresponding representative stress points move out along
0G and OH (see Fig, 2), respectively, with increasing p. The
yvield limit is first reached at G and H when

po, = %1/’ = (/) (33)
and then 2 0
_a h do _ _
w = -ng-ﬁ"“ = (W)M. (I‘ - 0)0 (3"")

As p/oo increases beyond (p/do)pL y Plastic regions must spread
]
inwards from points r = a, z = + % he The theory for elastic

bending action shows that, for fixed z, the extreme values of

d, and d, occur at the plate edge and center. At the center of
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the plate,

g, =¢
r t

=_+_%A(1+v)[3;pa12/h2 (r=0,z=i%h), (352
and the corresponding representative stress points move out along
OA and 0D, respectively, However the points A and D are not
reached before the points G and H are reached,

The discussion is now based upon general physical argu-
ments, and only qualitative conclusions may be reached., The
spreading inwards of the edge plastic regions results in a rela=~
tive weakening of the plate, and therefore accelerates the
initiation of central plastic regions. It is now clear from Egq.
(35) that the spreading outwards of plastic regions from the
points r = 0y 2 = & % h must in fact occur quite soon and certajirn-

ly before

= _2 SRR 2%
p/e, = 55 (/o) .. (263

Yielding at the plate center will occur as soon as the points A
and D are reached, Note that the center is always an isotropic
stress point,

In proceeding we shall first recall a result of Ref. [9]
based upon plastic~rigid bending theory, This result is that
hinge circles occur at the center and edge of the plate. In the
present context it is immediately concluded that, until membrane
action is significant, the tendency must be for the stress points
to approximate this situation and also to be generally consistent
with the plastic moment distributions found in Ref. [9]s Thus

for r = Oya the representative stress points must tend towards

PRI

ikt Sl b
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A,D or C,F according as z z O, respectively., Moreover as the

I
i
{
i
|
}

edge and central plastic regions grow the plastic stress points

b
-t

may be expected to occupy increasing parts of regimes AB, CB

;
;@ , and DE, FE.

jfj ‘ As p continues to increase the increasing importance of 1
Ly membrane action must disturb the symmetry of the plastic regimes ]
C about the center of the hexagon. The developmant of asymmetry \é
?ﬁ is accompanied by unloading followed by reversed loading of
. plate elements, ©Such effects will spread out across outer

annular and central regions in the lower and upper halves of
T the plate, respectively, Now when the displacements are quite

large, membrane action must predominate in regions away from the

plate edge but bending action will always predominate at the

nlate edges Ultimately there must be a narrow boundary layer
region at the plate edge across which there is a sharp transition
irom bending to membrane action.

It may be noted that the growth of plastic regions when
the plate is simply-supported has been studied in detail by
Sokolovsky [20]es This analysis is confined to elastic-plastic
membrane action, and assumptions a), b) and e) are made. Al-
though the inadmissible Hencky equations for the von Mises yield
condition are used, it seems probable that the results would ’
closely approximate those determined by the present analysis,

Note finally that probably the most significant limiting

factor governing the applicability of the analysls will be the

onset of high shear stresses in elastic regions which are neglect-

ed here,
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5)e Non-dimensional notation

It is necessary to introduce non-dimensional quantities

~;~'."«(’. T ey
. ' +
e &
N et st et Bt B e mg

.r,
0 RN N
SR 2 I S S

so that the basic equations may be written in a form more

appropriate for computation,

v

Note first that typical lengths parallel and normal to

2l

the plane of the plate are a and h, respectively, Further it

: is envisaged in the present work that h and the central deflec~
tion at the onset of yielding are of the same order, Thus a

second typical length normal to the plane of the plate is

a = a?h?oo/HBD (37)

—t
o
ST I £

(see Eq. 3%)s It is also supposed here that dut/ar and dw/ar X

‘j ow!/or are of the same order. These considerations suggest the

introduction of the following non~dimensional notation:
p=r/a, ¢ =z/h; W=wd,< U= au/d, (38)

The uniform load p is most conveniently expressed as a multiple

2
of % Q§ SR (see Eqge 33), i.e. let t be defined by
a
ly p°
P=3x75 LI (39)

a

so that according to bending theory the plate will first yield
when t = 1,
The fundamental equations (29) and boundary conditions

(30) now take the form:

L3¢ 9 10T TR
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It A
f 3 ) aW o' _
¢ =~ -—-{pj (a + Bv)A dCJ ;' (g + av)A agy .
Ji \l% ' !
2 l .d_. 6W W - ¥ 40
ap{pap(p )} =12 S, ap+pn)+l2 de-320 =0y )
% z e
il
p9=2 10 | @+ pvA cdc} (B + av)A'CaL, J
% L ], J
2 ~%
U
w'-S‘g =y' =0 at p=1 for t 0, (41)
where
U’ . oW oW ! :
n, .g};. & %_. [ a + Bv)A Ag, (42)
2.1
2 2 !
(¢ + BT + 20BYIA = (a + v)faU +Q_§_ (h)ﬁ_TW }
d dp % dp d%5 ¢
(] 1 f
v (B m{u - @ gﬁl—c}/p, (43)
A having replaced )\',
At =22y, (44)
Note also that d
It
t ! 2.1 '
0.0, = @3+ JAL . - fu'- @2 Q- o+ po a),
' 1 W' ' t
oo - M- o
- & —th- (B + anA'ls

\
(4+5)

h ot DA ST

a2 o
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X j
:i It is apparent now from the structure of the equations
;;{ that the geometrical and physical characteristics of the plate

t{’ enter only through the non-dimensional parameters
(i s _a° q

L1 d -1 2

;}; R=f Q- éﬁ?‘s S
‘E% ) > 46)

g =302
; 1 b doh

'fi and of course Poisson's ratio v, The procedure is therefore &
to integrate the equations for a range of values of these
parameters.

Note finally that the neglect of shear deformation

involves an error of order h2/a2, and that the use of approxi-

mate curvature formulas involves an error of order w2/a2g )
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Fig. 2. Tresca Yield Condition.
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